metal-organic papers

Acta Crystallographica Section E Structure Reports Online

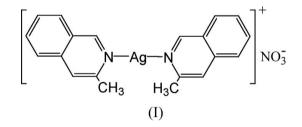
ISSN 1600-5368

Xian-Wu Dong, Hua Wu and Jian-Fang Ma*

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

Correspondence e-mail: jianfangma@yahoo.com.cn

Key indicators

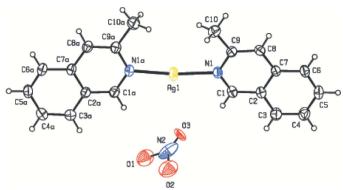

Single-crystal X-ray study T = 292 K Mean σ (C–C) = 0.005 Å Disorder in solvent or counterion R factor = 0.045 wR factor = 0.165 Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Bis(3-methylisoquinoline-*kN*)silver(I) nitrate

In the title compound, $[Ag(C_{10}H_9N)_2]NO_3$, the Ag^I cation, lying on a twofold rotation axis, is two-coordinated by two N atoms from two different 3-methylisoquinoline molecules in a linear coordination. The nitrate anions do not coordinate to the Ag^I cations, but rather act as counter-anions. The title compound forms a two-dimensional supramolecular structure through π - π interactions between the 3-methylisoquinoline ligands. Received 6 October 2005 Accepted 21 October 2005 Online 27 October 2005

Comment

In recent years, there has been tremendous growth in the field of supramolecular coordination polymers prepared from nitrogen ligands and transition metals (Munakata *et al.*, 2001). In particular, polynuclear d^{10} metal complexes have attracted extensive attention owing to their appealing structures and photoluminescent properties. A series of d^{10} metal–organic structures has been reported recently (Ma *et al.*, 2005; Jung *et al.*, 2004). It is well known that silver is a soft metal centre with a good affinity for aromatic nitrogen ligands (Vranka & Amma, 1966; Carlucci *et al.*, 1994; Venkataraman *et al.*, 1995). The Ag^I cation displays various coordination modes, *viz.* linear, trigonal and tetrahedral, in compounds containing nitrogen ligands (Munakata *et al.*, 2001). In this paper, we report the preparation and crystal structure of $[Ag(L)_2]NO_3$ (*L* is 3-methylisoquinoline), (I).



Selected bond lengths and angles for (I) are given in Table 1. As shown in Fig. 1, the Ag^{I} cation, lying on a twofold rotation axis, is two-coordinated by two N atoms from two different *L* molecules in a linear coordination. The nitrate anions do not coordinate to the Ag^{I} cations, but rather act as disordered counter-anions. The Ag-N distance of 2.143 (4) Å is similar to reported values (Makinen *et al.*, 2001).

There are weak $\pi - \pi$ interactions between the *L* ligands. Adjacent ligand rings from different molecules are aligned in an offset fashion, being approximately parallel to each other at a distance of *ca* 3.5 Å, indicating the presence of $\pi - \pi$ stacking interactions (Janiak, 2000), resulting in a two-dimensional supramolecular structure (Fig. 2).

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1

View of the coordination of Ag^I, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (a) $1 - x, y, \frac{3}{2} - z$.]

Experimental

After a mixture of AgNO₃ (0.085 g, 0.5 mmol) and L (0.0715 g, 0.5 mmol) in methanol (5 ml) had been stirred for 10 min, the white precipitate was dissolved by dropwise addition of dilute aqueous solution of NH₃. Crystals of (I) were obtained by evaporation of the solution for several days at room temperature.

Crystal data

$[Ag(C_{10}H_9N)_2]NO_3$ $M_r = 456.24$ Monoclinic, C2/c a = 10.418 (5) Å b = 16.043 (5) Å c = 11.484 (5) Å $\beta = 98.031$ (5)° V = 1900.6 (14) Å ³ Z = 4 Data collection	$D_x = 1.594 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 3040 reflections $\theta = 2.2-28.3^{\circ}$ $\mu = 1.09 \text{ mm}^{-1}$ T = 292 (2) K Block, colourless 0.46 \times 0.29 \times 0.25 mm
Bruker APEX CCD area-detector	2213 independent reflections
diffractometer	1685 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{int} = 0.036$
Absorption correction: multi-scan	$\theta_{max} = 28.3^{\circ}$
(<i>SADABS</i> ; Sheldrick, 1996)	$h = -13 \rightarrow 11$
$T_{min} = 0.617, T_{max} = 0.764$	$k = -21 \rightarrow 17$
5724 measured reflections	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F_o^2) + (0.1128P)^2]$
$wR(F^2) = 0.165$	where $P = (F_o^2 + 2F_c^2)/3$

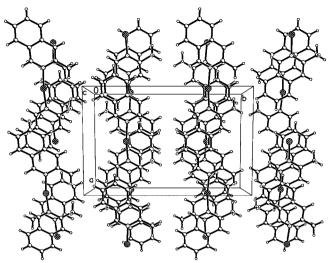

$R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F_0^2) + (0.11)]$	
$wR(F^2) = 0.165$	where $P = (F_0^2 + 2)$	
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$	
2213 reflections	$\Delta \rho_{\rm max} = 0.90 \ {\rm e} \ {\rm \AA}^{-3}$	
143 parameters	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$	

Table 1

Selected geometric parameters (Å, °).

Ag1-N1	2.142 (4)		
N1 ⁱ -Ag1-N1 C1-N1-Ag1	172.91 (11) 118.8 (2)	C9-N1-Ag1	122.6 (2)
Summatry and (i)	x 1 x = 1 ³		

Symmetry code: (i) $-x + 1, y, -z + \frac{3}{2}$.

An edge view of the two-dimensional sheet of (I) generated by π - π -interactions of the *L* ligand. The nitrate anions have been omitted for clarity.

All H atoms were positioned geometrically and refined as riding, with C-H = 0.93–0.96 Å and $U_{\rm iso}(\rm H)$ = 1.2 $U_{\rm eq}(\rm aromatic C)$ or 1.5 $U_{\rm eq}(\rm methyl C)$. The atoms of nitrate group are refined with a fixed occupancy of 0.50 for the disorder.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

The authors thank the National Natural Science Foundation of China (grant No. 20471014), the Fok Ying Tung Education Foundation and the Natural Science Foundation of Jilin province (China) for Support.

References

- Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carlucci, L., Ciani, G., Proserpio, D. M. & Sironi, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2755–2756.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Jung, O. S., Kim, Y. J., Lee, Y. A., Kang, S. W. & Choi, S. N. (2004). Cryst. Growth Des. 4, 23–24.
- Ma, J.-F., Yang, J., Li, S.-L., Song, S.-Y., Zhang, H.-J., Wang, H.-S. & Yang K.-Y. (2005). Cryst. Growth Des. 5, 807–812.
- Makinen, S. K., Melcer, N. J., Parvez, M. & Shimizu, G. K. H. (2001). Chem. Eur. J. 7, 5176–5182.
- Munakata, M., Wen, M., Suenaga, Y., Kuroda-Sowa, T., Maekawa, M. & Anahata, M. (2001). Polyhedron, 20, 2037–2043.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Venkataraman, D., Gardner, G. B., Lee, S. & Moore, J. S. (1995). J. Am. Chem. Soc. 117, 11600–11601.
- Vranka, R. G. & Amma, E. L. (1966). Inorg. Chem. 5, 1020–1025.